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The finite element method for solving the Vlasov-Poisson equations described in Part I has 
been tested on a number of standard problems-linear and nonlinear Landau damping of 
plasma waves, the two-stream and bump-on-tail instabilities, and the accuracy of the method 
veritied by comparison with results from other methods. Q 1988 Academic Press, Inc. 

1. INTRODUCTION 

In Part I we presented a finite element scheme providing for a numerical solution 
of the Vlasov-Poisson equations. In Part II we turn to some applications of the 
scheme, beginning with a set of well-understood problems which we have used to 
test the code throughly. To this end we have examined in turn the damping of an 
electrostatic plasma wave and the two-stream and bump-on-tail instabilities. 
Detailed comparisons of the finite element solutions show very good agreement 
indeed with various results in the literature. In particular, in Section 2a we compare 
results on linear Landau damping not only with standard theory but with the 
numerical results of Cheng and Knorr Cl] and Canosa, Gazdag, and Fromm [a]; 
the finite-element results for nonlinear Landau damping are shown to agree well with 
those published by Cheng and Knorr. In Sections 2b and 2c we consider the two 
stream and bump-on-tail instabilities and show that the finite element results 
reproduce satisfactorily earlier results of Cheng and Knorr Cl], Armstrong and 
Montgomery [3], and Klimas [4]. 

2. TESTS OF FEM VLASOV CODE 

(a) Damping of Electrostatic Waves 

In this section we apply the results of Part I to retrieve the classical and well- 
understood linear and nonlinear Landau damping of plasma waves. We solve the 
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FIG. 1. Evolution of the first tree Fourier modes of an electric field. 

dimensionless Vlasov-Poisson equations taking an init electron d~strib~t~~~ 
function of the form 

f(J(x, u, 0) =fo(v)(l + A cos A.-x) 

fo(u) = (1457~) exp( -u2/2), 
(1) 

where K is the wave number and A is the amplitude of the initial perturbation. 
examined the evolution of the amplitude of the electric field for K= 0.3, an 
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FIG. 2. Evolutions of the first three Fourier mode amplitudes obtained by Cheng and Knorr [I]. 
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A = 0.0159. After the initial transient had died out, the linear Landau damping 
regime was clearly established from which we determined the oscillation frequency 
and damping rate, 1.155 oPe and 0.0128 mpe, respectively, which compare well with 
the corresponding values obtained from the Landau dispersion relation, namely 
1.159 and 0.0126 o,,. The time development of the electric field amplitude shows 
exact agreement with the work of Cheng and Knorr [1] (cf. their Fig. 1) and that 
of Canosa, Gazdag, and Fromm [2] (cf. their Fig. 3). 

On increasing the initial field amplitude to A =0.5 we represent the time 
evolution of the first three Fourier modes of the electric field in Fig. 1. Figure 2 
shows the corresponding results obtained by Cheng and Knorr [ 11. The first mode 
[El1 damps at a higher rate than that predicted by linear Landau theory 
(yr = -0.153); using data lying between t = 1.5 o;’ and t = 8.7 o;’ we have 
y = -0.243 which compares with the value of -0.281 found by Cheng and 

FIG. 3. Evolution of a distribution function. 
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FIG. 4. Evolution of the tirst three electric field modes in the two-stream instability. 

Knorr [l]. We also see that the first mode IE,l attains its first minimum at 
t = 15.4 LO&~, in good agreement with the values of & = 15.3 w;’ observed by Cheng 
and Knorr [ 1 ] and t = 15.4 op,l observed by Canosa, Gazdag, and Fromm [2]. 

In Fig. 3 we show the time development of the spatially homogeneous part of the 
distribution function. In the initial stage a plateau is formed in the vicinity of t 
phase velocities of the wave at time t = 10.0 o;l, in qualitative agreement with the 
predictions of the quasilinear theory. At t = 15.0 WA’ a small bump appears in 
tail of the distribution function at about the phase velocities of the modes a 
causes all of them to grow. Later a wave-like structure develops and grows on 
main body of the distribution function and persists throughout the computation. As 
the amplitudes of the modes IElI, J&J, and [E,I grow (Fig. 2), the bole in the 
distribution function in the region 2.0 <V 6 2.5 becomes deeper, until t = 30 
following which it tends to be filled in. This is completed by t = 40 0~” at w 
time the first three modes saturate. The evolution of the distribution f~nc~~o~ 
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FIG. 5. Evolution of the first three electric field modes from the two-stream instability obtained by 
Cheng and Knorr [ 11. 
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observed in Fig. 3 agrees very closely indeed with the results obtained by Cheng 
and Knorr Cl] (cf. their Fig. 5). 

b. The Two-Stream Instability 
As a second test problem we considered the classical two-stream instability. The 

actual problem studied involves two identical counterstreaming beams of electrons 
embedded in a neutralizing background. The initial electron distribution function 
has the form given in (1) multiplied by the factor u’. The results are shown in Fig. 4 
in which we chose plasma beam parameters to correspond to those used by both 
Cheng and Knorr [l] and Klimas [4]. In Fig. 4, the first three modes of the elec- 
tric field are shown as functions of the time. The first mode El after a transient 
phase, experiences exponential growth until it reaches its maximum at t = 18.1 CO;‘. 
This mode then saturates and remains dominant at subsequent times. The second 
and third modes exhibit oscillatory behaviour after an initial transient phase. The 
behaviour of all three modes ) El 1, 1 E21, and 1 E31 agrees well with the observations 
of Klimas [4] (cf. his Fig. 3) and with the results obtained by Cheng and 
Knorr [l] reproduced in Fig. 5. 

Figure 6 shows the electrostatic field energy as a function of time. The field 
energy grows from t = 8.5 to t = 17.8 o&l, where it reaches its maximum and then 
oscillates with a period of about 18 0;‘. For comparison the results obtained by 
Cheng and Knorr are also represented in Fig. 6 by the dashed curve. 
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FIG. 6. Evolution of electrostatic field energy in the two-stream instability. The curve (---) shows 
for comparison the result obtained by Cheng and Knorr Cl]. 
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c. The “Bump-on-Tail” Instability 

Finally, we tested our FEM code on the “bump-on-tail” instability studie 
many authors both theoretically and computationally. In this problem electrons 
having a distribution function 

fp(X> UT 0) =fo(u) 1 + A 2 cos K,x , 1 121 
k=l 

where 

fo(u) = (2x)-1’4[hO(u) + ,/3/2 h4(u)] e-“‘* 

K,=O.15, A = 0.006, N=8 
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FIG. 7. Comparison of modes 2, 3, 4 for the bump-on-tail instability (b, c, d) with results (a) 
obtained by Armstrong and Montgomery [3]. 
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and 

(3) 

are embedded in a uniformly distributed immobile neutralizing background. In (3), 
h, is the mth orthogonal Hermite polynomial. 

In trial runs with A = 0.006, &I, I&l, and I&l are exponentially growing waves, 
with growth rates less than 0.1 ape, modes l&j and l&l are heavily Landau 
damped, and IE, 1, I./&(, and (E, 1 are either marginally stable or weakly Landau 
damped. The behaviour of modes two to four is shown in Figs. 7b, c, d. The 
behaviour of the modes agrees well with the results of Armstrong and Montgomery 
[3], reproduced in Fig. 7a. 

Turning to the velocity distribution we show in Fig. 8, f(v, t) for t = 0, 15, 30, 
45 cup;‘. These results too are in good agreement with those found by Armstrong 
and Montgomery [3] and the velocity distributions computed by Dawson and 
Shanny [S]. All agree that the hole in the distribution fills in. However, there is no 
clear indication of the “plateau” predicted by quasilinear theory and no sign of the 
high energy tail of suprathermal particles seen by Dawson and Shanny. 

We have also examined the evolution of the total electrostatic field energy. Our 
result is shown together with that of Armstrong and Montgomery [3] in Fig. 9. It 
is seen that once again very satisfactory agreement is obtained. 

These tests demonstrate that the finite element Vlasov code can reproduce the 
various results of now-standard problems obtained by other authors using a range 
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FIG. 8. Evolution of the bump-on-tail velocity distribution function. 
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FIG. 9. Evolution of the electrostatic field energy (a) with the results (b) found by Armstrong and 
Montgomery [3] for comparison. 

of methods. In the Landau damping run with a relatively large number of elements 
(256 x 32) and a time step of t = 0.02 o;r, we obtained results identical with those 
reported by Cheng and Knorr [ 1 ] and Canosa, Gazdag, and Fromm [2]. The con- 
servation of energy in these runs had an error as low as lo-‘. In studying the two 
stream instability, we used 128 x 16 elements and a time step of t = 0.05 wpe” an 
found that the energy was conserved to, better than 8 x lo-‘. For the “bump-o 
tail” instability we used 128 x 16 elements and a time step of t = 0.05 op,‘. The con- 
servation of energy was, in this case, better than lo-‘. These various comparisons 
have shown that the FEM Vlasov code performs satisfactorily in terms of accura 
and economy over a range of classical test problems. In these tests we have us 
periodic boundary conditions and fixed ions. However, the code has been written to 
cope both with non-periodic boundary conditions and mobile ions, both essential if 
we are to investigate a wider range of phenomena. 

3. CONCLUSIONS 

We conclude from this analysis that the FEM Vlasov code described in this work 
is a versatile tool for use in one-dimensional plasma problems. In practice the code 
has the following properties. In the first place noise levels are low and energy con- 
servation accurate. Second, by using elements of varying size it is possible to cope 
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effectively with phenomena such as plasma sheaths within which the plasma 
parameters vary rapidly compared with their behaviour in the body of the plasma 
but sharp discontinuities or delta functions cannot be modelled. In principle there is 
no difficulty in extending the method to higher dimensions. In addition, the FEM 
code is well suited to dealing with complicated boundary geometry in problems 
where this has to be taken into account. 
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